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ABSTRACT 

It is shown that certain simple figures can not be cut by scissors into pieces 
that can be reassembled to form certain other simple figures. 

Bolyai has shown that every convex polygon of unit area can be cut by a finite 
number of line segements into a finite number of pieces which can then be re- 
arranged to form the unit square (see, for example, [1]). We show that the only 
convex bodies that can thus be rearranged are polygons even if the scissors are 
permitted to cut along arbitrary Jordan curves. Similarly, a circle of radius two 
cannot be cut by Jordan scissors into pieces that can be reassembled to form 
four circles of radius 1. Variants of the problems studied here already occur 
in Euclid and have been studied up to recent times. (For reference, for example 
to work of Banach and Tarski, see [4] and [5]). This paper, though self-con- 
tained, is, in a sense, a sequel to that of Rodrigues [2]. 

An easily stated result is 

PROPOSITION 1. Suppose that E and E' are strictly convex planar bodies. 
Then E and E' are scissor-congruent if and only if they have the same area 
and their respective boundaries B and B" are scissor-congruent. 

Definition of scissor congruence. A topological disc D is the image of the 
unit disc under a homeomorphism of the plane onto itself, or equivalently, is 
the interior and boundary of a simple, closed Jordan curve. Let intD = interior 
of D, bd D = boundary of D, extD = exterior of D = complement of D, and 
let ~ be the empty set. 

Throughout the first 15 lemmas these notations are used. 
(a) Dt,--', Dn, D_ i , ' " ,  D_ n are 2n topological discs (included in a fixed 2-di- 

mensional Euclidean plane n). 
(b) T1,..., T~ are n rigid motions (of n onto itself). 
(c) E+ is the set-theoretic union of D~ for i > 0; 

E_ is the union of Dl for i < 0. 
(d) K+ is the boundary of E+; 

K_ is the boundary of E_. 
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(e) E = E + U E _ ;  K = K + k J K _ .  
(f) J, is the boundary of Di for all i. 
Throughout the first 15 lemmas these four assumptions are implicit. 
(i) The image of Di under Ti is D_i, for i = 1, ..., n. 
(ii) int D i n  int Dj = • for i > j  > 0; 

int Di ~ int Dj -- • for i < j < 0. 
The joint assumptions (i) and (ii) are abbreviated to: E+ is scissor-congruent 

to E_. 
The next assumption is automatic in the most interesting case in which E+ and 

E_ are themselves topological discs (as in Proposition 1) or even finite unions 
of disjoint topological discs (as in Theorem 1). 

(iii) J,v'IJjV'IK+ is a finite set for i > j  > 0; 
J, n J j  n K_ is a finite set for i < j < 0. 

The following assumption is of no mathematical importance and is made 
mainly to simplify some ensuing notation. 

(iv) E + n E_ = O. 
An arc A is the image of a connected subset A' of the circumference C of a 

circle under a homeomorphism (of the plane onto itself) except that the empty 
set, C, and one-point sets are not considered as arcs. A is open irA '  is open in C. 

If  K + is the disjoint union of a finite number of arcs A 1, "", A, and a finite num- 
ber of points and K_ is the disjoint union of a finite number of arcs A_ 1, "", A_, 
and a finite number of points and for each i, 1 < i _< r, A_ ~ is the image of A i 
under a rigid motion R~, then K+ is scissor-congruent to K_.  

Circles and squares are not rectifiably scissor-congruent. A proof that a 
circular disc S cannot be partitioned into pieces with rectifiable boundaries which 
can be rearranged so as to form a square S' will be given here. Though it seems 
impossible to modify this proof so as to apply to the case of  nonrectifiable 
boundaries, we present it now because it is so simple and the underlying idea 
pervades the more complicated proof of Theorem 1. It may however be skipped 
without logical loss for it is superseded by the general argument below. 

If  A is an arc on the boundary of a disc D, say that A is convex relative t o / )  if 
the line segment joining every pair of points of A is a subset of D; say that A is 
concave relative to D if the line segment joining every pair of points of A is disjoint 
from the interior of D. For each disc D, and each point x on the boundary of D, 
le t fo(x ) = + 1 [respectively - 1] if there is an arc A containing x in its interior 
that is congruent to a subarc of the circular boundary of S and which is convex 
[concave] relative to D; letfD(x ) = 0 otherwise. If  the boundary of D is rectifiable, 
thenfo may be integrated with respect to the arc length measure determined by the 
boundary, obtaining thereby a number #(D). More generally, these definitions are 
applicable if D is any set such as E+ above. The measure # is easily seen to be 
invariant under rigid motions - -#(D)  = tI(M(D)) for all isometries M "  and to be 
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additive --/~(D t W D2) =/.t(Dl) + g(D2) whenever the intersection of  D 1 and D 2 
consists of at most a finite number of arcs. These two properties of/~ imply that 
p(Dz) = #(D2) whenever Dz and D 2 are scissor-congruent. Since p ( S ) =  2zcR 
where R is the radius of  S, and/1(S')  = 0, S and S' are not scissor-congruent 
if only rectifiable cuts are admissible. This argument obviously applies to cubes 

and balls in any finite dimensional Euclidean space. 

The main proof. For  any x, let N(x) mean neighborhood of  x. The following 
topological properties are obvious for the unit disc and consequently hold for any 
topological disc D. For  any x in the boundary of D and any N(x): 

(a) N(x) n i n t  D # ¢ ;  

(b) N(x) n ext D # ~ ;  

(c) (N(x) - { x ) )~  bdD # ~; 

(d) There is an N'(x) c N(x) such that N'(x) n intD and N'(x) n extD are 
connected. 

Note the following. If Ax,A2,'" is a sequence of disjoint arcs c J,  where 
J ( c  plane) is homeomorphic to the unit circle C, then diameter A, ~ 0 as n ~ ~ .  

Since the homeomorphism between C and J is uniformly continuous it suffices 
to show this for J = C. But if J = C, the sum of  the diameters of  the A, is less 
than or equal to the sum of the arc lengths of the A, which, in turn, is at most 2n. 
This implies that no Jordan arc contains infinitely many, pairwise-disjoint, 
congruent subarcs. Notice also that K is the boundary of E. 

LEMMA 1. For all i, Ji - U J~ c K. 

Proof. Let x e Ji - U Js. Since U JJ is dosed,  for every e > 0 there is a 
j , i  j ~ i  

discD(x) of radius less than e centered at x, such that D(x) oJs=t~,  j # i, so 

D(x) = ( D(x) n int D ~) W ( D(x) n e x t  Ds). 

Since D(x) is connected, either D(x) c i n t D  s or D(x) c e x t D  s. Of course, 
D(x) n intD i # • and D(x) nextD~ # ~. Recall that intD i n intD s = ~ for 
j # i; consequently D(x) ~ extDj for j # i, and hence D(x) ~ extE # tI); so 
x e K .  

DEFINITION. 

v = U (s ,  n s j  n u U (s,  n n K). 
i ~ j ~ k  i ~ j  

i~k 

As is not difficult to verify, (ii) together with (iii) imply: 

(v) V is a finite set. 

(At the slight cost of a not very important redundancy, (v) can be assumed 
instead of verified.) 
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LEMMA 2. Let A be an arc, A c ( J i - V ) .  Then A c K  or A c J j f o r  some 
j # i .  

Proof. By Lemma 1, A = ([..J A n J j ) to  (A c~ K), so A is a union of  sets 

closed in A whose pairwise intersections are in A n V = t~. Since A is connected, 
Lemma 2 is obvious. 

DEFINITIONS. For i > 0, T_~ = T~ -~. It is convenient to introduce two trans- 
formations T and R defined for certain ordered couples (x, i). For x ~ Ji, let 
T(x,i)  = ( T i x , - i ) .  For x e J i n J  j -  V, with i ~ j ,  let R ( x , i ) =  (x,j); since 
x ~ V, j is unique, so R is well-defined. 

Denote the identity map of a set X onto itself by Ix. 

LEMMA 3. (a) ~(R), that is, the domain of R, is the set of  all (x,i) such that 
x ~Ji and xq~K t3 V. 

(b) ~(R) ,  that is, the range of R, is the same as ~(R) ,  and R 2 = 1~(~). 
(c) :~(T) = ~(T) ,  and T 2 = l~tz). 
(d) ~((TR)~T)  = ~((TR)kT) ,  and ((TR)kT) 2 = l~to-x)kr), for  each k ~_ O. 

Proof. (a) follows from Lemma 1; (b) and (c) are immediate; and (d) follows 
from (b) and (c), using induction on k. 

LEMMA 4. Assume: 
(a) x and y are in K, 
(b) ( x , i ) ~ ( ( T R )  k T), 

and 
(c) (y,j) ~ ~( (  T R) h T). 

Then (TR)*r(x , i )  = (TR)hT(y, j)  only i f  k = h and (x,O = (y,j). 

Proof. Suppose k < h. Then (TR)hT = (TR)*T(RT)  h-k. By Lemma 3(d), 
(x, i) = (RT) h- k(y,j). If k = h, then (x, i) = (y,j). If  k < h, then (x, i) e ~ (R)  = ~ (R)  
by Lemma 3(c), so x ~ K by Lemma 3(a), which is a contradiction. 

DEFINITmN. W = {x: x ~ K  and there exist i, k, v, i ' such that v E V, 
(x,i) ~ ~((TR)* T) and (TR)* r(x,  i) -- (v, i')}. 

LEMMA 5. W is finite. 

Proof. For every x ~ W, the set of aU (v,i') such that for some (i,k), ( i ,k ,v , i ' )  
satisfies the conditions of  the definition of  W is nonempty. By Lemma 4, distinct 
x 's  correspond to disjoint sets. Hence, the cardinality of  W does not exceed that 
of  {(v,j) : v ~ V}, which is finite, since V is finite. 

LEMMA 6. K - ( V  tO BO is a finite union of  disjoint open arcs, each included 
in some Jl, and this decomposition is unique. 
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Proof. Clearly, K = U J,, so K - (V L) W) = U [K t3 (J, - ( v  u IV))]. Since 
i t 

V U W is finite, Ji - (V u W) is uniquely expressible as a finite union of  disjoint 
open arcs (its connected components). By Lemma 2, every open arc in the de- 
composition of Ji - (V U W) is either included in K or is disjoint from K. There- 
fore, K C3 ( J ~ -  (V U W)) has such a unique decomposition, and since the 
K rh (Ji - (V U W)) = (K - (V U W)) r3 dt are disjoint sets closed in their union 
K - (V L/W), the result follows. 

DErIrnXIOS. p(x) = X' if x,X' e K - ( V  U W) and there exist i, i', k such that 

(1) (x, i) e ~( (  T R)kT) and ( T R ) t T(x,  i) = (x', i'). 

Here is a proof that p is well defined and p2 = l~tp). 
If  (x , i , k , x ' , i ' )  and (x , j ,h ,y ' , j ' )  satisfy (1), then so do (x ' , i ' , k ,x , i )  and 

(y' , j ' ,  h,x, j)  by Lemma 3(d). Since both (x, i) and (x,j) are in ~(T) ,  x e Jt ¢3 Jj.  
But x e K  - V, so i = j .  

By Lemma 4, x '  = y ' ,  so p is well-defined, and p2 = l~t~). 

D~INmON. Let ~¢ be the finite set of open arcs described in Lemma 6. 

LV2at, IA 7. I f  A e ~/, then A c ~(p),  and, therefore, ~(p)  = K - (V u W). 
Moreover, there exist io, il, . . . , i  k such that for  0 < r < k: 

(a) -- i, ~ i,+ l ; 
(b) A c J~o ; 

and, letting A, denote T~ ... TtoA, 
(c) A , ~ J - l ,  oJ t ,+ , ;  
(d) p(A) = a k c J_,,, N (K - (V L) W)). 

Proof. Fix A e ~¢. Then A is a subset of some unique Ji, say i = io. 
Let (A,i) be the set of all (x,i) for which x cA.  Then (A, i o ) c  ~ (T ) ,  and 

T(A, io) = (Ao, - io), where A o = TtoA is congruent to A. The immediate goal 
is to show that if (r, Ar, - i,) satisfies 

(2) (A,io) c 2( (TR) 'T)  and (TR)" T(A, io) = ( A , -  i~), then either 

A, cJ_~  N ( K - ( V U W ) ,  
o r  

(r + 1 ,A,+I ,  - i,+1) satisfies (2), 

where A, c J _ t n  J~,÷~, - i, ~ i,+~, and A,+ 1 = T~,+~A,. 
Suppose (r, A , , -  i,) satisfies (2). Since A O W is empty, A, N V certainly is 

empty; since Ar is congruent to A, A, is an arc; and A, c J _ . .  By Lemma 2, 
A, = K or A, c Jt,+, for some i,+1 # - i,. In the latter case, ( A , , -  i,) c ~(R)  
= 2 ( T R ) ,  so (A, io) ~ 2 ( ( T R f + I T )  and (TR)~+IT(A, io) = TR(A, ,  - i , )  
= T(A,,i~+I) = (Ti,+ , A , -  i , + t ) =  ( A , + I , -  i~+1). In the former case, it suffices 
to show that A, o W is empty. Suppose that it is not empty, and contains, say, w. 
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Then there exist j ,  k, o, j '  such that v ~ V, (w,j) ~ ~( (TR)kT) ,  and (TR)kT(w,j)  
= (v,j '),  which implies that w e J~ and that (w,j) ~ ~( (TR)k+lT) .  On the other 

hand, by Lemma 3d, ( w , -  i , ) c ~ ( ( T R ) ' T )  and ( T R ) r T ( w , -  ir)e(A,io)  , which 
implies that ( w , -  i,) q~((TR~+IT)) .  Since w e J _ ~ n K -  V, j =  - i r. Con- 

sequently (since ~((TR)~T)  is decreasing in k), k = r, which implies that 
(v,j ') ~ (A, io). Since this contradicts A n V = O, the immediate goal has been 
achieved. 

The lemma will be proved once it is shown that (2) cannot hold for all r, for then 
k + 1 can be taken as the first r for which (2) does not  hold. I f  (2) holds for all r, 
then A, c J - i , ,  andA,  is congruent to A for all r > 0; and, by Lemma 4, the 

sequence (Ao, - io), (AI, - il), '.., is disjoint. There then is a strictly increasing 
sequence r l ,  r2, "" with - ir~ = i for  some i and all j ,  A~j c J~ f o r j  = 1,2, ..., and 
the A,~'s are disjoint and congruent. But this is impossible. 

LEMMA 8. For every A ~ ~ ,  p(A) ~ ~ .  

Proof. Since p2 = la~p), obviously &(p)=  ~(p)  and p is 1 - 1. By Lemma 7, 
~ (p)  = K - (V u W), and, for every A6 ~/, p(A) is congruent to A and p(A) c J~ 
for some i, so that p(A) is an open arc. Thus the decomposition K - (V U W) 
= p(K - ( V u  W)) = U p(A) is of  the type described in Lemma 6, and the 
assertion follows. ~t~ 

Lemmas 7 and 8 show that p is a scissor congruence of K onto itself. They also 
show that the rigid notions comprising this scissor congruence are in the group 

generated by T~,..., T~. 
The scissor congruence p decomposes into components in a natural way: 

DEFINITION. K+_ is the set-theoretic union of all A 6 ~ such that A o K +  and 
p(A) c K_ ; similarly for K_ +, K + +, and K_ _. 

Plainly, K+ - ( V u  W) = K+_  u K+ + ; and K_ - (V u W) = K_ + u K _ _ .  
Moreover,  since p(A) ~ ~ and p2(A) = A for all A ~ ~¢, 

(a) p(K+_) = K_+,  
(b) p(K++) = K++, 

and 

(c) p (K__)  = K _ _ .  

DEFINITION. p+_ = p restricted to K + _ .  

Our next goal is to present a simple intuitive property of  the scissor congruence 

p+ _ in Lemma 12. But rigor seems to demand two definitions as well as preliminary 

Lemmas 9, 10, and 11. 

DEFn, nTIOtqS. Let D and D' be topological discs, let their respective boundaries 
be J and J ' ,  and let A be an open arc with A = J n J ' .  Say that D and D' are on 
the same side of A if, for every x 6 A, 
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(3) there exists N(x)  such that N(x)  - A c (int D N int D' )  u (ext D n ext D').  

Say that D and D'  are on opposite sides of  A if, for every x e A,  

(4) there exists N(x) such that N(x)  - A c (int D • ext D')  U (ext D n i n t  D').  

The proofs of  the next three lemmas are not  difficult. 

LEMMA 9. D and D' are either on the same or on opposite sides of  A. 

LEMMA 10. I f  int D ~ int D' is empty,  then D and D' are on opposite sides of A. 

I f  D c D', then D and D' are on the same side of  A .  

LEMMA 11. I f  D and D' are on the same side of  A,  and D and D" are on 

opposite sides of  A,  then D' and D" are on opposite sides of  A. l f  D and D' are on 

opposite sides of A,  and D and D" are on opposite sides of  A,  then D' and D" are 

on the same side of  A.  

DEFINITION. For  each A e ,~, let Ta denote the rigid motion T~k... T~ o described 

in Lemma 7. Of  course, Ta(A) = p(A). 

LEMMA 12. The scissor congruence p+_ preserves sides of  arcs. That  is, i f  

(a) A ~ ,  

(b) A c J i f o r  some i > O, 
(c) p(A) c J j f o r  s o m e j  < O, 

then Ta(D~) is on the same side of  p(A) as is Dj .  

The scissor congruence K+ + -~ K+ + reverses sides of  arcs, as does the scissor 

congruence K _ _  -~ K _ _ .  

Proof. Let A ~ .~ ,  and let i0, "",ik be as in Lemma 7. Since - i, # i,+j, clearly 
int D_~r nintDir+ 1 = @, so by Lemma 10, D_~. and Dr. ÷ 1 are on opposite sides 

of  Ar for 0 < r _< k. Let Di'o = T~r"" T~oDto for 0 _ r < k. As will now be shown, 
Dio and D_ ~. are on the same side of  Ar for r even and on opposite sides for r odd. 

By definition Dt ° = T~o(Dio) = D-io ; therefore D°o and D-to are on the same side 
of  A o. Now use Lemma 11 repeatedly to see that,  for 0 < m <= k/2, 

D~o m and D-t~,~ are on the same side of  A2,, 

D~o m and Di~.. ÷, are on opposite sides of  A2,, :~ 

O2m+l - io ana  D_ t2., + ~ are on opposite sides o f  A2r n + I :e- 

D2m+l - to a n a  Dt2,.+2 are on the same side of  A2m+l  ::~ 

2m+2 Dto and D _ ~ .  ÷, are on the same side of  A2m + 2" 

Since k is even i f  A ~ K+ _ and is odd if A ~ K + + or if  A c K _  _, the Lemma 

follows. 
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It is now easy to obtain various results of intuitive interest by specializing E+ 
and E_. For example, Lemma 14 is immediate after this preliminary. 

LEMMA 13. I f  E+ is a finite union of disjoint strictly convex bodies, (each of 
which is necessarily a union of some of the Di) then K+ + is empty. 

Proof. Suppose K+ + ~ • and let A = K+ +. In the notation of the above proof, 
D~o and D-tk are on opposite sides of p(A). Since Dto and D-tk are connected, 
there exist D and D' in the assumed decomposition of E+ such that Dto = D and 
D-tk C D'. Plainly A c  bdD because A = A  N bdE+ = A ~ (bdD U bd(E+ - D)) 
= A n bd D; similarly, p(A)c bdD'.  Let D k = Tt~ ..- T~oD. By Lemma 10, D k and 
D' are on opposite sides of iv(A). Let x E p(A). For any N(x), there is a 
y ~ (N(x) - {x}) n p(A). Since D k and D' are strictly convex, ½ x + ½y ~- 
int D k I"1 int D' which is in contradiction with D ~ and D' being on opposite sides 
of p(A). 

L~MMA 14. I f  E+ and E_ are finite unions of disjoint strictly convex topo- 
logical discs, then K+ is scissor-congruent to K_.  

Proof. Immediate from Lemma 13. 

Other conclusions are similarly easy to derive. For example, the only convex 
body that is scissor-congruent to a polygon is itself a polygon. In particular, 
the circle is not scissor-congruent to the square. 

Though Jordan arcs can have positive 2-dimensional Lebesgue measure, it is 
easy to verify: 

LEMMA 15. I f  K has two-dimensional Lebesgue measure zero, then E+ and 
E_ have the same area. 

LEMMA 16. Let E+ and E_ be finite unions of disjoint compact convex planar 
bodies. I f  E+ has the same area as E_ and K+ is scissor-congruent to K_,  then 
E+ is scissor-congruent to E_.  

Proof. The scissor congruence of K+ and K_ ,  implies the existence of convex 
arcs A1, "-',An, At, -'-, A" and rigid motions M1, . . . ,M, such that: K+ = u At ; 
K_ = u A~ ; Mr(At) = A~ ; At n A~ and A " n A/consist of at most one point each 
for i ~ j .  Let Pt,  . . . ,P, and P~, ...,P" be the end points of the arcs As, ...,A, and 
A'~,...,A" respectively. Suppose first that E+ and E_ are themselves convex 
bodies. The Pt and P~ are the vertices (not necessarily in order) of convex polygons 
P and P' inscribed respectively in the convex bodies E+ and E_ respectively. 

Each arc At together with the chord joining its end points determines a sector 
St of E+. Plainly Mt maps St onto S~. Consequently, St and S't have the same area 
as do their unions U St and U S [  Therefore, E+ - U  St has the same area as 
E _ -  u S~', that is, the interiors o f P  a n d P '  have the same area. Since P aild P '  
have the same area, Bolyai's theorem applies to show that P and P '  are scissor- 
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congruent. Since a scissor congruence of P and P '  and isometries of S~ onto 
S~ for all i determines a unique scissor congruence of E+ with E_ ,  the proof is 
complete if E+ and E_ are convex. The argument is easily modified to handle the 
general case. 

T~mOR~M 1. Suppose that E+ and E_ are finite unions of disjoint compact 
strictly convex planar bodies. Then E+ and E_ are scissor-congruent if and only 
i f  they have the same area and their boundaries are scissor-congruent. 

Proof. Apply Lemmas 14, 15, and 16. 
Since the only convex body whose boundary is scissor-congruent to a circle, 

• s a congruent circle, one gets 

COROLLARY. A circular disc is scissor-eongruentto no other strictly convexibody. 
For a slight generalization of  Theorem 1 and of the italicised statement 

appearing after Lemma 14, introduce two definitions: an arc is elementary if it is 
either strictly convex or a straight line segment; a convex body is elementary if 
its boundary consists of a finite number of elementary arcs. 

PROPOSITION 2. An elementary convex body E+ is scissor-congruent to a convex 
body E_ if and only if E_ is elementary, E_ has the same area as E+, and the 
strictly convex portion of the boundary of E+ is scissor-congruent to that of E_.  

We are grateful to Glen Bredon for showing us how to remove "str ict ly" 
from the Corollary, and to Branko Griinbaum for subsequently pointing out to us 
that Proposition 2, together with an interesting result of Blaschke 1-3, Chapter II, 
§6], implies a considerable further improvement of  the Corollary, namely: 

THEOREM 2. I f  an ellipse E+ is scissor-congruent to a convex body E_ then 
there is a rigid motion carrying E+ onto E_ .  

We do not know whether any convex body other than an ellipse is scissor- 
congruent to no convex body other than itself. Nor do we know how to formulate 
and prove a theorem in the spirit of Proposition 1 to the effect that a cube in three 
dimensions is not scissor-congruent to a ball. 
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